a2 United States Patent

Yuhan et al.

US009465781B2

US 9,465,781 B2
*QOct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

ANALYSIS OF WEB APPLICATION STATE

Applicant: Amazon Technologies, Inc., Seattle,
WA (US)

Inventors: John S. Yuhan, Lynnwood, WA (US);
Ross V. Korsky, Auburn, WA (US)

Assignee: Amazon Technologies, Inc., Seattle,
WA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/585,314
Filed: Dec. 30, 2014
Prior Publication Data

US 2015/0113383 Al Apr. 23, 2015

Related U.S. Application Data

Continuation of application No. 13/449,620, filed on
Apr. 18, 2012, now Pat. No. 8,929,667.

Int. CL.

GO6K 9/68 (2006.01)

GO6F 17/22 (2006.01)

G09G 5/14 (2006.01)

U.S. CL

CPC GO6F 17/2247 (2013.01); GO9G 5/14

(2013.01); GO9G 2370/027 (2013.01); GO9G
2370/20 (2013.01)

Field of Classification Search
CPC ..o GO6K 9/6202; GO6K 9/6203; GO6F
17/30526

USPC ..o 382/218-219; 715/230, 231
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2004/0049673 Al 3/2004 Song et al.

2005/0177597 Al 82005 Elmer

2005/0226621 Al 10/2005 Kikuchi et al.

2009/0199083 Al* 82009 Sar GOG6F 17/30882
715/231

2011/0191676 Al1* 8/2011 Guttman GOG6F 3/048
715/716

2012/0173966 Al 7/2012 Powell et al.

2013/0004087 Al 1/2013 Kumar et al.

OTHER PUBLICATIONS

File history of U.S. Appl. No. 13/449,627, filed Apr. 18, 2012.
* cited by examiner

Primary Examiner — Ruiping Li
(74) Attorney, Agent, or Firm — Thomas | Horstemeyer,
LLP

(57) ABSTRACT

Disclosed are various embodiments for obtaining captures of
network pages from an electronic commerce system,
wherein each of the captures comprises attributes of the
respective one of the network pages and capture data of one
of the network pages in a browser. The system identifies a
correlated pair of the captures having a positive degree of
correlation between the attributes of a respective pair of the
network pages. The system generates a differential for the
correlated pair, wherein the differential comprises distinc-
tions between the capture data of the correlated pair of
captures. The system generates a notice associated with the
correlated pair, wherein the differential exceeds a predefined
threshold.

20 Claims, 8 Drawing Sheets

100

‘Computing Environment 103

Data Store 112

Workilow Defnitions User Data 136

Catalog Data 133

Corveonm) |[Thmm—
T T

Electronic Capturs
Commerce Differential
System Engine

123

Network Pags | | Network Page
Rowosts 41 | | Resporees

Master Client(s) 108

Slave Clienl(s) 108

Browser Master Client Browssr Slave Client
162 Application 185 182 Application 185
Workfiow Defn
31
Vonior Acions 161 orir
163 Actions 167 163

Data Store 181
i Data 138

U.S. Patent Oct. 11, 2016 Sheet 1 of 8 US 9,465,781 B2

100
Computing Environment 103 /

Data Store 112

Workflow Definitions
131

Catalog Data 133
i Capture Data 138 l ltems 134 |

User Data 136 |

Electronic Capture
Commerce Differential
System Engine
121 123
A
* | Network
Network Page N;t;l\;(‘))r(l)(nl:s’:ge 109
Requests 191 192
Network Page
Network getworkt P?g1e Responses
Intermediary 105 equests 131 192
A A
' 1 ' 1
Master Client(s) 106 Slave Client(s) 108
Browser |, Master Client Browser > Slave Client
162 "1 Application 165 162 Application 185
¢ Workflow Def'n ¢
State 131 . State
Monitor [A t """"" 1 7 """ Actions 167 —»- Monitor
163 r i foons Jur 163

ICo
ICo

Capture Data 1 Capture Data 138

Data Store 161 ‘ Data Store 181 ’

FIG. 1A

U.S. Patent Oct. 11, 2016 Sheet 2 of 8 US 9,465,781 B2

100

Computing Environment 103

Data Store 112

Workflow Definitions | User Data 136 |
131 —
Catalog Data 133

Capture Data 138 l ltems 134 |

Electronic Capture
Commerce Differential
System Engine
121 123

} |

Network Page

Network Page RESDONSES Network
Requests 191 P 109
192
\ 4 . y .
Master Client(s) 106 Slave Client(s) 108
Browser Master Client Browser (¢—» Slave Client
162 » Application 165 — 1 Actions 167 N 162 Application 185
¢ Workflow Defn ¢ {7 Actions 167 |
State 131 State)
M(;ggor Actions 167 M(';ggor
e __| PageData —=
187
Data Store 161 T~
Capture Data 138

FIG. 1B

U.S. Patent Oct. 11, 2016 Sheet 3 of 8 US 9,465,781 B2

165

/

K Notify Network Intermediary of Master

Client role
206
K Direct the Browser to render the next
network page of the Electronic —
Commerce System
209 I

\ Transmit the activities of the Browser
to the Slave Client(s)

212

Capture Page?

215
\ Capture a portion of the network

pages rendered by the Browser and
associated state data

218 I

\ Transmit the capture actions to the
Slave Client(s)

221

Pages
Remaining?

224
\ Collect captures from Slave Client(s)

FIG. 2A

U.S. Patent

Oct. 11, 2016 Sheet 4 of 8

206
‘\ Direct the Browser to render the next
» network page of the Electronic [—
Commerce System
210 Il

Transmit the actions of the Browser and
network page data to the Slave Client(s)

212

Capture Page?

215
k Capture a portion of the network

pages rendered by the Browser and
associated state data

218

k Transmit the capture actions to the
Slave Client(s)

221

Pages

Remaining?

224
\\ Collect captures from Slave Client(s)

FIG. 2B

US 9,465,781 B2

165

/

U.S. Patent

303

Oct. 11, 2016 Sheet S of 8

o

Notify Network Intermediary of Slave
Client role

306

v

-

»
'

Obtain action from Master Client for
Browser to render the next network
page of the ECS

312

309

Receive Capture
Action?

Capture a portion of the network
pages rendered by the Browser and
associated state data

315

Receive Collection
Request?

Transmit captures to Master Client(s)

FIG. 3A

US 9,465,781 B2

185

/

U.S. Patent

307

Oct. 11, 2016 Sheet 6 of 8

\

Obtain action from Master Client for
Browser to render the next network
page of the ECS and network page data

312

309

Receive Capture
Action?

Capture a portion of the network
pages rendered by the Browser and
associated state data

315

Receive Collection

Request?

Transmit captures to Master Client(s)

FIG. 3B

)

US 9,465,781 B2

185

J/

U.S. Patent Oct. 11, 2016 Sheet 7 of 8 US 9,465,781 B2

123

/

-

Obtain capture data to be compared

406 v

k Identify capture pairs suitable for comparison
based upon attributes of the captures

409 v
K Generate a differential for a pair of
captures

412

Differential Theshold
Exceeded?

415

K Generate a notice based on
differential

le
<

418

Capture Pairs
Remaining?

FIG. 4

U.S. Patent

Oct. 11, 2016

Sheet 8 of 8 US 9,465,781 B2

Computing Environment 103

Data Store

161/181

Computing Device(s) 500
Memory(ies) 506
- Electronic Commerce System 121
Processor(s)
503 Data Store
12
Capture Differential Engine 123
A A
< \ 4 /- 509 \ 4 >
FIG. 5
Master/Slave Client(s) 106/108
Memaory(ies) 606
Browser 162
Proc&or(s) State Monitor 163

Master/Slave Client App. 165/185

i ~ 609

US 9,465,781 B2

1
ANALYSIS OF WEB APPLICATION STATE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of pending U.S. patent
application Ser. No. 13/449,620, entitled “Analysis of Web
Application State,” filed Apr. 18, 2012. This application is
incorporated by reference herein in its entirety.

BACKGROUND

Browser applications may render the network pages of an
electronic commerce system or other network site to have an
appearance that differs depending upon the particular
browser used. Furthermore, a given browser may render a
network page differently based upon changes made to the
network page.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better
understood with reference to the following drawings. The
components in the drawings are not necessarily to scale,
emphasis instead being placed upon clearly illustrating the
principles of the disclosure. Moreover, in the drawings, like
reference numerals designate corresponding parts through-
out the several views.

FIGS. 1A and 1B are drawings of a networked environ-
ment according to various embodiments of the present
disclosure.

FIGS. 2A and 2B are flowcharts illustrating examples of
functionality implemented as portions of a master client
application executed in a master client in the networked
environments of FIGS. 1A and 1B according to various
embodiments of the present disclosure.

FIGS. 3A and 3B are flowcharts illustrating examples of
functionality implemented as portions of a slave client
application executed in a slave client in the networked
environments of FIGS. 1A and 1B according to various
embodiments of the present disclosure.

FIG. 4 is a flowchart illustrating examples of functionality
implemented as portions of a capture differential engine
executed in a computing environment in the networked
environments of FIGS. 1A and 1B according to various
embodiments of the present disclosure.

FIG. 5 is a schematic block diagram that provides one
example illustration of a computing environment employed
in the networked environments of FIGS. 1A and 1B accord-
ing to various embodiments of the present disclosure.

FIG. 6 is a schematic block diagram that provides one
example illustration of a client employed in the networked
environments of FIGS. 1A and 1B according to various
embodiments of the present disclosure.

DETAILED DESCRIPTION

The present disclosure relates to techniques for capturing
and validating the appearance of network pages. For
example, a given network page may have a different appear-
ance based upon the browser application used to render the
network page, or a given browser may change the appear-
ance of a network page after an update to the page. In order
to validate the appearance of different versions of network
pages in various browsers, captures must be taken of ren-
derings of the network pages by these various browsers at
different points in time. Each of the captures may include

10

20

40

45

55

2

various data about the rendering of the network page and the
communication session with the electronic commerce sys-
tem or other network page server. Various client computers,
each using different browsers, may be used to perform a
capture of a network page or a sequence of network pages
that may be stored in a data store for later validation.

A capture differential engine may be used to compare
captures of network pages in order to validate that their
appearance is consistent across different browsers and/or
changes to the network pages. The capture differential
engine may examine attributes of the various captures to
ensure that the network pages represented in a given pair of
captures are suitable for comparison. The attributes of a pair
of captures need not be identical to be suitable for compari-
son, rather the attributes may be correlated to determine a
sufficient degree of similarity. In the following discussion, a
general description of the system and its components is
provided, followed by a discussion of the operation of the
same.

With reference to FIG. 1A, shown is a networked envi-
ronment 100 according to various embodiments. The net-
worked environment 100 includes a computing environment
103 in data communication with a network intermediary
105, one or more master clients 106, and one or more slave
clients 108 by way of a network 109. The network interme-
diary 105 may cache communications between master cli-
ents 106 and the computing environment 103 to be repro-
duced for the slave clients 108. The network 109 includes,
for example, the Internet, intranets, extranets, wide area
networks (WANSs), local area networks (LANs), wired net-
works, wireless networks, or other suitable networks, etc., or
any combination of two or more such networks. In some
embodiments, the network intermediary 105, master clients
106, and/or the slave clients 108 may be virtual machines
executed in the computing environment 103 or other com-
puting device.

The computing environment 103 may comprise, for
example, a server computer or any other system providing
computing capability. Alternatively, the computing environ-
ment 103 may comprise a plurality of servers or other
computing devices that are arranged, for example, in one or
more server banks or computer banks or other arrangements.
For example, the computing environment 103 may comprise
a cloud computing resource, a grid computing resource,
and/or any other distributed computing arrangement. The
computing environment 103 may be located in a single
installation or may be distributed among many different
geographical locations.

Various applications and/or other functionality may be
executed in the computing environment 103 according to
various embodiments. Also, various data is stored in a data
store 112 that is accessible to the computing environment
103. The data store 112 may be representative of a plurality
of data stores 112 as can be appreciated. The data stored in
the data store 112, for example, is associated with the
operation of the various applications and/or functional enti-
ties described below.

The components executed on the computing environment
103, for example, include an electronic commerce system
121, a capture differential engine 123, and other applica-
tions, services, processes, systems, engines, or functionality
not discussed in detail herein. The electronic commerce
system 121 is executed in order to facilitate the online
purchase of items from one or more electronic marketplaces
over the network 109. The electronic commerce system 121
also performs various backend functions associated with the
online presence of an electronic marketplace in order to

US 9,465,781 B2

3

facilitate the online purchase of items. For example, the
electronic commerce system 121 may generate content
pages such as, for example, web pages and/or other types of
network content that are provided to clients 106 for the
purposes of promoting and selecting items for purchase,
rental, download, lease, or any other forms of consumption.

The capture differential engine 123 is executed to identify
differences among captures of network pages. To this end,
the capture differential engine 123 may use the captures,
user data, catalog data, and/or other data from the data store
112. In order for a user to identify the particular captures to
be compared, the capture differential engine 123 may render
a display on a client over the network 109 by a browser, a
client application, and/or other application.

The data stored in the data store 112 includes, for
example, workflow definitions 131, catalog data 133, user
data 136, captures 138, and potentially other data. The
workflow definitions 131 define the activities, actions, and/
or steps to be carried out in order to automate all or a portion
of the capture of one or more network pages. In some
embodiments, the workflow definitions 131 may be
expressed using functional logic as may be expressed, for
example, in terms of programmed code. In other embodi-
ments, the workflow definition 131 may be expressed using,
for example, extensible markup language (XML), Business
Process Execution Language (BPEL), XML Process Defi-
nition Language (XPDL), or other such languages.

The catalog data 133 may include items 134 that are
offered in the marketplace of the electronic commerce
system 121, as well as other information associated with the
items 134. The various data stored in catalog data 133 may
include, for example, titles, descriptions, classifications,
quantities, conditions, images, options, weights, customer
reviews, customer ratings, keywords, prices, promotions,
shipping configuration, tax configuration, unique identifiers,
and any other data related to items 134. An item 134 may
refer to a product, good, service, software download, mul-
timedia download, supply chain, or any combination,
bundle, or package thereof, that may be offered for sale,
purchase, rental, lease, download, and/or any other form of
consumption and/or acquisition as may be appreciated.

The capture data 138 includes various data about the
rendering of network pages by various browser applications
and the communication sessions through which the network
pages are delivered from the electronic commerce system
121 to the clients. Each capture may include a screenshot of
the rendered network page, the document object model
(DOM) tree created for the network page by a browser,
various attributes associated with the communication ses-
sion, and/or other possible data associated with the network
page. Each capture may further include data associated with
the DOM tree, such as relative positions of the elements of
the DOM tree, coordinates for positioning the elements,
and/or other data associated with the DOM tree. The attri-
butes may include a user login state, a browser identifier, a
uniform resource identifier (URI), a version identifier for the
network page, and/or other attributes associated with the
communication session. The captures may be organized into
albums that present a sequence of captures representing all
or a portion of the sequence of network pages encountered
during a communication session.

The master client 106 is representative of a plurality of
master client devices that may be coupled to the network
109. The master client 106 may comprise, for example, a
processor-based system such as a computer system. Such a
computer system may be embodied in the form of a desktop
computer, a laptop computer, a tablet computer system, or

10

15

20

25

30

35

40

45

50

55

60

65

4

other devices with like capability. Various applications and/
or other functionality may be executed in the master client
106 according to various embodiments. Also, various data is
stored in a data store 161 that is accessible to the master
client 106. The data store 161 may be representative of a
plurality of data stores 161 as can be appreciated. The data
stored in the data store 161, for example, is associated with
the operation of the various applications and/or functional
entities described below.

The master client 106 may be configured to execute
various applications such as a browser 162, state monitor
163, master client application 165, and/or other applications.
The browser 162 may be executed in a master client 106, for
example, to access and render network pages, such as web
pages, or other network content served up by the computing
environment 103 and/or other servers. The state monitor 163
may be executed to monitor and report various state data
associated with a communication session between the
browser 162 and the electronic commerce system 121.

The master client application 165 may be executed to
capture a rendering of a network page by the browser 162
and attributes associated with the communication session
between the browser 162 and the electronic commerce
system 121. In addition, the master client application 165
translates the activities of the browser 162 and the activities
undertaken to capture renderings of select ones of the
network pages into actions 167. The actions 167 represent an
intermediate form of the various activities that permit a slave
client using any type of browser 162 to duplicate the
activities of the master client associated with capturing a
network page.

The slave client 108 is representative of a plurality of
slave client devices that may be coupled to the network 109.
The slave client 108 may comprise, for example, a proces-
sor-based system such as a computer system. Such a com-
puter system may be embodied in the form of a desktop
computer, a laptop computer, a tablet computer system, or
other devices with like capability. Various applications and/
or other functionality may be executed in the slave client 108
according to various embodiments. Also, various data is
stored in a data store 181 that is accessible to the slave client
108. The data store 181 may be representative of a plurality
of data stores as can be appreciated. The data stored in the
data store 181, for example, is associated with the operation
of the various applications and/or functional entities
described below.

The slave client 108 may be configured to execute various
applications such as a browser 162, state monitor 163, slave
client application 185, and/or other applications. The slave
client application 185 may be executed to capture a render-
ing of a network page by the browser 162 and attributes
associated with the communication session between the
browser 162 and the electronic commerce system 121. In
addition, the slave client application 185 may obtain and act
upon actions 167 from a master client 106, as well as
transmit stored captures 138 to a master client 106 and/or
other computing device.

Next, a general description of the operation of the various
components of the networked environment 100 is provided.
To begin, the browser 162 of the master client 106 issues a
network page request 191 for a network page of the elec-
tronic commerce system 121. In some embodiments, a user
directs the browser 162 to the network page. In other
embodiments, the master client application 165 executes a
workflow definition 131 that directs the browser 162 to the
network page.

US 9,465,781 B2

5

The network page request 191 passes through the network
intermediary 105 prior to being forwarded to the computing
environment 103. The network intermediary 105 is config-
ured with the identity of one or more master clients 106 and
one or more slave clients 108 associated with each of the
master clients 106. The network intermediary 105 caches
any network page request 191 from the master client 106 for
a network page of the electronic commerce system 121, as
well as the associated network page response 192 to the
request from the electronic commerce system 121.

As the browser 162 is directed to carry out various
activities, such as issuing network page requests 191, the
activities are translated into actions 167. The actions 167
may be communicated to the slave clients 108 and enable the
slave clients 108 to issue network page requests 191 that
masquerade as network page requests 191 from duplicate of
the associated master client 106. The masquerading tech-
niques may involve manipulating network addresses, dupli-
cating browser session cookies, and/or other techniques as
can be appreciated. Thus, if a network page request 191 is
received from a slave client 108 matching attributes of a
network page request 191 previously received from a master
client 106, the slave client 108 will receive the network page
response 192 previously cached by the network intermediary
105. In this scenario, the network page request 191 sent by
the slave client 108 destined for the computing environment
103 will not be forwarded to the destination, and the network
page response 192 will be sent by network intermediary 105
masquerading as the computing environment 103.

A portion of the network pages rendered in the clients may
be selected for capture. In some embodiments, the master
client application 165 executes the workflow definition 131
containing various criteria for capturing a given one of the
network pages. As a non-limiting example, the workflow
definition 131 may contain a sequence of network pages to
render, wherein a given network page may contain criteria to
capture the page if the network page is a page for an item
containing more than fifty user reviews. The state of the
session between the browser 162 and the electronic com-
merce system 121 may be monitored by the state monitor
163 and may be used to identify the present state of various
attributes of the session, including attributes that may be
criteria for capturing a network page.

The state of the attributes may be reported to the master
client application 165. In embodiments of the master client
application 165 executing the workflow definition 131, the
master client application 165 may use the values of the
attributes to automatically select the network pages to be
captured and stored in the capture data 138 of the data store
161. In other embodiments, a user may manually select the
network pages to be captured and stored in the capture data
138 of the data store 161 based upon the values of the
attributes and/or other criteria as can be appreciated.

For the network pages selected for capture in the master
client 106, various data for each of the network pages may
be stored in the capture data 138 such as, for example, a
screen capture of the network page as rendered in the
browser 162, a DOM tree as created from the network page
by the browser 162, data associated with placement of the
elements of the DOM tree, various attributes of the network
page session as reported by the state monitor 163, and/or
other data associated with the network page. The master
client application 165 further translates the capture activities
of the master client 106 into actions 167 that are commu-
nicated to the slave clients 108. As a consequence of
translating the browsing and capture activities of the master
client 106 into actions for the slave client(s) 108, the same

10

15

20

25

30

35

40

45

50

55

60

6

network page data is rendered and captured by the associ-
ated clients, albeit using the rendering of a browser 162 that
may be unique to each client.

Upon termination of a browsing session in a workflow
definition 131 or by direction from a user, the master client
application 165 may collect the captures 138 from each
slave client 108. The captures from the master client 106 and
the slave clients 108 associated with the master client 106
may be transmitted to the master client 106 and/or comput-
ing environment 103 for further analysis and processing.

To this end, the capture differential engine 123 obtains
various criteria with which to select and compare captures.
The specified criteria may be compared against the attributes
for each of the captures as collected by the clients such as,
for example, user login state, time of rendering, the URI of
the network page, a product identifier of a product in the
network page, type of browser used for the rendering, and/or
other attributes as can be appreciated. As a non-limiting
example, the criteria may be highly specific such as compare
a capture of page X taken on Monday with another capture
of page X taken by the same client using the same browser
162 on Tuesday. Alternatively, the criteria may be general-
ized such as, for example, compare all similar captures taken
within two specific capture sessions.

Upon identifying a pair of captures to be compared, the
capture differential engine 123 may compare the captures
using various techniques such as, for example, comparing
images of the renderings by performing a pixel-by-pixel
comparison identifying the locations in which the pixels of
the image differ, a mean squares comparison of the images,
and/or other image similarity techniques. The pixel com-
parison may be further adapted to compare only sub-regions
of a rendered page rather than the entirety of the page. As
another example, the captures may be compared by mea-
suring differences in the dimensions of the DOM tree created
for each capture by a respective browser 162. As a further
example, images of the captures may be compared by one or
more users who are then asked to identify the degree of
similarity between the images. Furthermore, one or more of
these techniques may be combined and the results weighted
to generate a differential reflecting the degree of similarity
among each pair of captures. Captures having a differential
beyond a threshold value may trigger a notification of a
potential problem with the respective network pages.

Referring next to FIG. 1B, shown is another embodiment
of the networked environment 100. This embodiment of the
networked environment 100 differs from FIG. 1A due to the
removal of the network intermediary 105 and the addition of
page data 187. The page data 187 includes at least a DOM
tree as created by the browser 162 of the master client 106
and may further include other components of the network
page such as images, videos, other network pages, and/or
other data necessary to render the network page in the slave
client 108.

The operation of this embodiment of the networked
environment 100 differs in the techniques used by the slave
client 108 to retrieve the network pages as directed by the
master client 106. In this embodiment, the master client 106
provides the slave client 108 with page data 187 in addition
to the actions 167. Some components of the network page
may not be provided in the page data 187 and may need to
be retrieved from the electronic commerce system 121 or
other source by the slave client 108. In some embodiments,
the master client 106 provides the slave client 108 with page
data 187 without the actions 167. In these embodiments, the
slave client 108 may capture all or a portion of the network
pages rendered from the page data 187.

US 9,465,781 B2

7

Turning now to FIG. 2A, shown is a flowchart that
provides one example of the operation of a portion of the
master client application 165 according to various embodi-
ments. It is understood that the flowchart of FIG. 2A
provides merely an example of the many different types of
functional arrangements that may be employed to implement
the operation of the portion of the master client application
165 as described herein. As an alternative, the flowchart of
FIG. 2A may be viewed as depicting an example of steps of
a method implemented in the master client 106 (FIG. 1A)
according to one or more embodiments.

Beginning with box 203, the master client application 165
may notify the network intermediary 105 (FIG. 1A) of the
master client role of the master client 106, and potentially
the identity of the slave client(s) 108 (FIG. 1A) associated
with the master client 106. Next, in box 206, the master
client application 165 may direct the browser 162 (FIG. 1A)
to render a network page of the electronic commerce system
121 (FIG. 1A) based upon a workflow definition 131 (FIG.
1A).

Then, in box 209, the master client application 165
translates the activities of the browser 162 into actions 167
(FIG. 1A) and transmits the actions 167 to the slave client(s)
108 of the master client 106. The actions 167 transmitted
may further contain browser session cookies and/or other
data sufficient to duplicate the communication session
between the master client 106 and the electronic commerce
system 121 within each of the slave clients 108. Subse-
quently, in box 212, the master client application 165
determines whether the currently rendered network page of
the master client 106 should be captured. As discussed
previously, the capture decision may be based upon attri-
butes of the network page and capture criteria of a workflow
definition 131, or the capture decision may be made by an
operator of the master client 106. If the network page should
not be captured, execution of the master client application
165 may return to box 206. Alternatively, if the network
page should be captured, execution of the master client
application 165 proceeds to box 215.

In box 215, the master client application 165 may store
various data associated with the network page in the capture
data 138 (FIG. 1A). The capture data 138 may include, for
example, a screen capture of the network page as rendered
in the browser 162, a DOM tree as created from the network
page by the browser 162, data associated with placement of
the elements of the DOM tree, various attributes of the
network page session as reported by the state monitor 163
(FIG. 1A), and/or other data associated with the network
page. Next, in box 218, the master client application 165
translates the capture activities of the master client 106 into
actions 167 that are transmitted to the slave clients 108.
Transmitting the actions 167 to the slave clients 108 permits
the same network page data to be rendered and captured by
the all the associated clients, while using the rendering of a
browser 162 that may be unique to each client.

Then, in box 221, the master client application 165
determines if any further pages remain to be rendered. The
determination may be known if no further pages remain in
a workflow definition 131 or if the operator of the master
client 106 determines the browsing session is complete. If
additional pages remain to be rendered, execution of the
master client application 165 returns to box 206. Alterna-
tively, if the browsing session is complete, execution of the
master client application 165 proceeds to box 224. In box
224, the master client application 165 collects the captures
from each of the slave clients 108 using the file transfer
protocol (FTP), hypertext transfer protocol (HTTP), and/or

20

30

40

45

55

8

other data transfer protocols as can be appreciated. There-
after, this portion of the master client application 165 ends
as shown.

Referring now to FIG. 2B, shown is a flowchart that
provides another example of the operation of a portion of the
master client application 165 according to various embodi-
ments. The flowchart of FIG. 2B resembles FIG. 2A with the
exception that box 203 is removed and box 209 has been
replaced with box 210. In box 210, the master client appli-
cation 165 translates the activities of the browser 162 (FIG.
1A) into actions 167 (FIG. 1A) and transmits the actions to
the slave client(s) 108 (FIG. 1A) of the master client 106
(FIG. 1A). The actions transmitted may further contain a
DOM tree created from the network page by the browser
162, browser cookies and/or other data sufficient to duplicate
the communication session between the master client 106
and the electronic commerce system 121 (FIG. 1A) within
each of the slave clients 108. The page data transferred to the
slave clients 108 should be sufficient to permit each slave
client 108 to render the network page within the local
browser 162 without modifying the state of the communi-
cation session established by the master client 106.

Moving on to FIG. 3A, shown is a flowchart that provides
one example of the operation of a portion of the slave client
application 185 according to various embodiments. It is
understood that the flowchart of FIG. 3A provides merely an
example of the many different types of functional arrange-
ments that may be employed to implement the operation of
the portion of the slave client application 185 as described
herein. As an alternative, the flowchart of FIG. 3A may be
viewed as depicting an example of steps of a method
implemented in the slave client 108 (FIG. 1A) according to
one or more embodiments.

Beginning with box 303, the slave client application 185
may notify the network intermediary 105 (FIG. 1A) of the
slave client role of the slave client 108 (FIG. 1A), and
potentially the identity of the master client 106 (FIG. 1A)
associated with the slave client 108. Next, in box 306, the
slave client application 185 may obtain an action 167 (FIG.
1A) from the master client 106. The action may contain a
URI, browser cookies, and/or other data associated with
duplicating the browsing session of the master client 106 in
the slave client 108. To this end, the slave client application
185 may direct the browser 162 (FIG. 1A) to render a
network page of the electronic commerce system 121 (FIG.
1A) using the data provided in the action 167.

Subsequently, in box 309, the slave client application 185
determines whether a capture action 167 was received for
the currently rendered network page of the slave client 108.
If a capture action 167 is not received, execution of the slave
client application 185 may return to box 306. Alternatively,
if the page should be captured, execution of the slave client
application 185 proceeds to box 312. In box 312, the slave
client application 185 may store various data associated with
the network page in the capture data 138 (FIG. 1A). The
capture data 138 may include, for example, a screen capture
of the network page as rendered in the browser 162, a DOM
tree as created from the network page by the browser 162,
data associated with placement of the elements of the DOM
tree, various attributes of the network page session as
reported by the state monitor 163 (FIG. 1A), and/or other
data associated with the network page.

Then, in box 315, the slave client application 185 deter-
mines if a collection request has been received from the
master client application 165. If no collection request is
received, execution of the slave client application 185
returns to box 306. Alternatively, if a collection request is

US 9,465,781 B2

9

received, execution of the slave client application 185 pro-
ceeds to box 318. In box 318, the slave client application 185
collects the capture data 138 from the data store 181 (FIG.
1A) and transmits the capture data 138 to a destination
specified by the master client 106 using FTP, HTTP, and/or
other data transfer protocols as can be appreciated. There-
after, this portion of the slave client application 185 ends as
shown.

Turning now to FIG. 3B, shown is a flowchart that
provides another example of the operation of a portion of the
slave client application 185 according to various embodi-
ments. The flowchart of FIG. 3B resembles FIG. 3A with the
exception that box 303 is removed and box 306 has been
replaced with box 307. In box 307, the slave client appli-
cation 185 may obtain an action 167 (FIG. 1A) from the
master client 106 (FIG. 1A). The action 167 may contain a
DOM tree created from the network page by the browser 162
(FIG. 1A), browser session cookies and/or other data suffi-
cient to masquerade or duplicate the communication session
between the master client 106 and the electronic commerce
system 121 (FIG. 1A) within each of the slave clients 108
(FIG. 1A) without moditfying the state of the communication
session established by the master client 106.

Referring next to FIG. 4, shown is a flowchart that
provides one example of the operation of a portion of the
capture differential engine 123 according to various embodi-
ments. It is understood that the flowchart of FIG. 4 provides
merely an example of the many different types of functional
arrangements that may be employed to implement the opera-
tion of the portion of the capture differential engine 123 as
described herein. As an alternative, the flowchart of FIG. 4
may be viewed as depicting an example of steps of a method
implemented in the computing environment 103 (FIG. 1A)
according to one or more embodiments.

Beginning with box 403, the capture differential engine
123 obtains various criteria with which to select and com-
pare captures. Next, in box 406, the capture differential
engine 123 correlates the specified criteria against the attri-
butes for each of the captures as collected by the clients such
as, for example, user login state, time of rendering, the URI
of the network page, a product identifier of a product in the
network page, type of browser 162 (FIG. 1A) used for the
rendering, and/or other attributes as can be appreciated. As
a result, the capture differential engine 123 identifies pairs of
captures having attributes that are correlated to a minimum
threshold degree.

Next, in box 409, the capture differential engine 123 may
compare the captures using various techniques such as, for
example, comparing images of the renderings by performing
a pixel-by-pixel comparison identifying the locations in
which the pixels of the image differ. The pixel comparison
may be further adapted to compare only sub-regions of a
rendered page rather than the entirety of the page. As another
example, the captures may be compared by measuring
differences in the dimensions of the DOM tree created for
each capture by a respective browser 162. As a further
example, images of the captures may be compared by one or
more users who are then asked to identify the degree of
similarity between the images. Furthermore, one or more of
these techniques may be combined and the results weighted
to generate a differential reflecting the degree of similarity
among each pair of captures.

Subsequently, in box 412, the capture differential engine
123 determines whether the differential meets a threshold
value. If the differential for the capture pair does not meet
the threshold value, execution of the capture differential
engine 123 proceeds to box 418. Alternatively, if the capture

10

15

20

25

30

35

40

45

50

55

60

65

10

differential meets the threshold, in box 415, the capture
differential engine 123 generates a notification of a potential
problem with the respective network pages. Next, in box
418, the capture differential engine 123 determines if addi-
tional capture pairs exist to be examined. If additional
capture pairs do exist, execution of the capture differential
engine 123 returns to box 409. Alternatively, if no additional
capture pair exists to be examined, execution of this portion
of the capture differential engine 123 ends as shown.

With reference to FIG. 5, shown is a schematic block
diagram of the computing environment 103 according to an
embodiment of the present disclosure. The computing envi-
ronment 103 may comprise one or more computing devices
500. The computing device 500 includes at least one pro-
cessor circuit, for example, having a processor 503 and a
memory 506, all of which are coupled to a local interface
509. To this end, the computing device 500 may comprise,
for example, at least one server computer or like device. The
local interface 509 may comprise, for example, a data bus
with an accompanying address/control bus or other bus
structure as can be appreciated.

Stored in the memory 506 are both data and several
components that are executable by the processor 503. In
particular, stored in the memory 506 and executable by the
processor 503 are the electronic commerce system 121,
capture differential engine 123, and potentially other appli-
cations. Also stored in the memory 506 may be a data store
112 and other data. In addition, an operating system may be
stored in the memory 506 and executable by the processor
503.

It is understood that there may be other applications that
are stored in the memory 506 and are executable by the
processors 503 as can be appreciated. Where any component
discussed herein is implemented in the form of software, any
one of a number of programming languages may be
employed such as, for example, C, C++, C#, Objective C,
Java, Javascript, Perl, PHP, Visual Basic, Python, Ruby,
Delphi, Flash, or other programming languages.

A number of software components are stored in the
memory 506 and are executable by the processor 503. In this
respect, the term “executable” means a program file that is
in a form that can ultimately be run by the processor 503.
Examples of executable programs may be, for example, a
compiled program that can be translated into machine code
in a format that can be loaded into a random access portion
of the memory 506 and run by the processor 503, source
code that may be expressed in proper format such as object
code that is capable of being loaded into a random access
portion of the memory 506 and executed by the processor
503, or source code that may be interpreted by another
executable program to generate instructions in a random
access portion of the memory 506 to be executed by the
processor 503, etc. An executable program may be stored in
any portion or component of the memory 506 including, for
example, random access memory (RAM), read-only
memory (ROM), hard drive, solid-state drive, USB flash
drive, memory card, optical disc such as compact disc (CD)
or digital versatile disc (DVD), floppy disk, magnetic tape,
or other memory components.

The memory 506 is defined herein as including both
volatile and nonvolatile memory and data storage compo-
nents. Volatile components are those that do not retain data
values upon loss of power. Nonvolatile components are
those that retain data upon a loss of power. Thus, the
memory 506 may comprise, for example, random access
memory (RAM), read-only memory (ROM), hard disk
drives, solid-state drives, USB flash drives, memory cards

US 9,465,781 B2

11

accessed via a memory card reader, floppy disks accessed
via an associated floppy disk drive, optical discs accessed
via an optical disc drive, magnetic tapes accessed via an
appropriate tape drive, and/or other memory components, or
a combination of any two or more of these memory com-
ponents. In addition, the RAM may comprise, for example,
static random access memory (SRAM), dynamic random
access memory (DRAM), or magnetic random access
memory (MRAM) and other such devices. The ROM may
comprise, for example, a programmable read-only memory
(PROM), an erasable programmable read-only memory
(EPROM), an electrically erasable programmable read-only
memory (EEPROM), or other like memory device.

Also, the processor 503 may represent multiple proces-
sors 503 and the memory 506 may represent multiple
memories 506 that operate in parallel processing circuits,
respectively. In such a case, the local interface 509 may be
an appropriate network 109 (FIG. 1A) that facilitates com-
munication between any two of the multiple processors 503,
between any processor 503 and any of the memories 506, or
between any two of the memories 506, etc. The local
interface 509 may comprise additional systems designed to
coordinate this communication, including, for example, per-
forming load balancing. The processor 503 may be of
electrical or of some other available construction.

With reference to FIG. 6, shown is a schematic block
diagram of the client 106, 108 according to an embodiment
of the present disclosure. The client 106, 108 includes at
least one processor circuit, for example, having a processor
603 and a memory 606, both of which are coupled to a local
interface 609. To this end, the client 106, 108 may comprise,
for example, at least one server computer or like device. The
local interface 609 may comprise, for example, a data bus
with an accompanying address/control bus or other bus
structure as can be appreciated.

Stored in the memory 606 are both data and several
components that are executable by the processor 603. In
particular, stored in the memory 606 and executable by the
processor 603 are the browser 162, the state monitor 163, the
client applications 165, 185, and potentially other applica-
tions. Also stored in the memory 606 may be a data store
161, 181 and other data. In addition, an operating system
may be stored in the memory 606 and executable by the
processor 603.

It is understood that there may be other applications that
are stored in the memory 606 and are executable by the
processors 603 as can be appreciated. Where any component
discussed herein is implemented in the form of software, any
one of a number of programming languages may be
employed such as, for example, C, C++, C#, Objective C,
Java, Javascript, Perl, PHP, Visual Basic, Python, Ruby,
Delphi, Flash, or other programming languages.

A number of software components are stored in the
memory 606 and are executable by the processor 603. In this
respect, the term “executable” means a program file that is
in a form that can ultimately be run by the processor 603.
Examples of executable programs may be, for example, a
compiled program that can be translated into machine code
in a format that can be loaded into a random access portion
of the memory 606 and run by the processor 603, source
code that may be expressed in proper format such as object
code that is capable of being loaded into a random access
portion of the memory 606 and executed by the processor
603, or source code that may be interpreted by another
executable program to generate instructions in a random
access portion of the memory 606 to be executed by the
processor 603, etc. An executable program may be stored in

10

15

20

25

30

35

40

45

50

55

60

65

12

any portion or component of the memory 606 including, for
example, random access memory (RAM), read-only
memory (ROM), hard drive, solid-state drive, USB flash
drive, memory card, optical disc such as compact disc (CD)
or digital versatile disc (DVD), floppy disk, magnetic tape,
or other memory components.

The memory 606 is defined herein as including both
volatile and nonvolatile memory and data storage compo-
nents. Volatile components are those that do not retain data
values upon loss of power. Nonvolatile components are
those that retain data upon a loss of power. Thus, the
memory 606 may comprise, for example, random access
memory (RAM), read-only memory (ROM), hard disk
drives, solid-state drives, USB flash drives, memory cards
accessed via a memory card reader, floppy disks accessed
via an associated floppy disk drive, optical discs accessed
via an optical disc drive, magnetic tapes accessed via an
appropriate tape drive, and/or other memory components, or
a combination of any two or more of these memory com-
ponents. In addition, the RAM may comprise, for example,
static random access memory (SRAM), dynamic random
access memory (DRAM), or magnetic random access
memory (MRAM) and other such devices. The ROM may
comprise, for example, a programmable read-only memory
(PROM), an erasable programmable read-only memory
(EPROM), an electrically erasable programmable read-only
memory (EEPROM), or other like memory device.

Also, the processor 603 may represent multiple proces-
sors 603 and the memory 606 may represent multiple
memories 606 that operate in parallel processing circuits,
respectively. In such a case, the local interface 609 may be
an appropriate network 109 (FIG. 1A) that facilitates com-
munication between any two of the multiple processors 603,
between any processor 603 and any of the memories 606, or
between any two of the memories 606, ctc. The local
interface 609 may comprise additional systems designed to
coordinate this communication, including, for example, per-
forming load balancing. The processor 603 may be of
electrical or of some other available construction.

Although the electronic commerce system 121, capture
differential engine 123, master client application 165, slave
client application 185, and other various systems described
herein may be embodied in software or code executed by
general purpose hardware as discussed above, as an alter-
native the same may also be embodied in dedicated hard-
ware or a combination of software/general purpose hardware
and dedicated hardware. If embodied in dedicated hardware,
each can be implemented as a circuit or state machine that
employs any one of or a combination of a number of
technologies. These technologies may include, but are not
limited to, discrete logic circuits having logic gates for
implementing various logic functions upon an application of
one or more data signals, application specific integrated
circuits having appropriate logic gates, or other components,
etc. Such technologies are generally well known by those
skilled in the art and, consequently, are not described in
detail herein.

The flowcharts of FIGS. 2A-4 show the functionality and
operation of an implementation of portions of the master
client application 165, slave client application 185, and
capture differential engine 123. If embodied in software,
each block may represent a module, segment, or portion of
code that comprises program instructions to implement the
specified logical function(s). The program instructions may
be embodied in the form of source code that comprises
human-readable statements written in a programming lan-
guage or machine code that comprises numerical instruc-

US 9,465,781 B2

13

tions recognizable by a suitable execution system such as a
processor 503 in a computer system or other system. The
machine code may be converted from the source code, etc.
If embodied in hardware, each block may represent a circuit
or a number of interconnected circuits to implement the
specified logical function(s).

Although the flowcharts of FIGS. 2A-4 show a specific
order of execution, it is understood that the order of execu-
tion may differ from that which is depicted. For example, the
order of execution of two or more blocks may be scrambled
relative to the order shown. Also, two or more blocks shown
in succession in FIGS. 2A-4 may be executed concurrently
or with partial concurrence. Further, in some embodiments,
one or more of the blocks shown in FIGS. 2A-4 may be
skipped or omitted. In addition, any number of counters,
state variables, warning semaphores, or messages might be
added to the logical flow described herein, for purposes of
enhanced utility, accounting, performance measurement, or
providing troubleshooting aids, etc. It is understood that all
such variations are within the scope of the present disclo-
sure.

Also, any logic or application described herein, including
the electronic commerce system 121, capture differential
engine 123, master client application 165, and slave client
application 185, that comprises software or code can be
embodied in any non-transitory computer-readable medium
for use by or in connection with an instruction execution
system such as, for example, a processor 503 in a computer
system or other system. In this sense, the logic may com-
prise, for example, statements including instructions and
declarations that can be fetched from the computer-readable
medium and executed by the instruction execution system.
In the context of the present disclosure, a “computer-
readable medium” can be any medium that can contain,
store, or maintain the logic or application described herein
for use by or in connection with the instruction execution
system. The computer-readable medium can comprise any
one of many physical media such as, for example, magnetic,
optical, or semiconductor media. More specific examples of
a suitable computer-readable medium would include, but are
not limited to, magnetic tapes, magnetic floppy diskettes,
magnetic hard drives, memory cards, solid-state drives, USB
flash drives, or optical discs. Also, the computer-readable
medium may be a random access memory (RAM) including,
for example, static random access memory (SRAM) and
dynamic random access memory (DRAM), or magnetic
random access memory (MRAM). In addition, the com-
puter-readable medium may be a read-only memory (ROM),
a programmable read-only memory (PROM), an erasable
programmable read-only memory (EPROM), an electrically
erasable programmable read-only memory (EEPROM), or
other type of memory device.

It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible
examples of implementations set forth for a clear under-
standing of the principles of the disclosure. Many variations
and modifications may be made to the above-described
embodiment(s) without departing substantially from the
spirit and principles of the disclosure. All such modifications
and variations are intended to be included herein within the
scope of this disclosure and protected by the following
claims.

Therefore, the following is claimed:

1. A non-transitory computer-readable medium embody-
ing a program executable in at least one computing device,
the program when executed, causing the at least one com-
puting device to at least:

5

10

25

30

40

45

50

14

obtain, from a data store, a first plurality of captures
corresponding to a first subset of a plurality of web
pages, wherein individual ones of the first plurality of
captures comprise a respective document object model
(DOM) tree of a respective rendering of a respective
one of the web pages in a browser;
obtain, from the data store, a second plurality of captures
corresponding to a second subset of the plurality of web
pages;
identify a plurality of correlated pairs of captures between
the first plurality of captures and the second plurality of
captures, individual ones of the plurality of correlated
pairs of captures comprising a respective one of the first
plurality of captures and a respective one of the second
plurality of captures, wherein the plurality of correlated
pairs of captures are identified has having a positive
degree of correlation between a respective first plurality
of attributes of the respective one of the first plurality
of captures and a respective second plurality of attri-
butes of the respective one of the second plurality of
captures,
generate a plurality of differentials for individual ones of
the correlated pairs comprising a measure of a differ-
ence in dimensions between a respective first DOM tree
of the respective one of the first plurality of captures
and a respective second DOM tree of the respective one
of the second plurality of captures in a respective
correlated pair; and
generate a notice in response to at least one of the
differentials meeting a predefined threshold.
2. The non-transitory computer-readable medium of claim
1, wherein the first plurality of captures correspond to a
rendering of the first subset of the plurality of web pages in
a first computing device, and the second plurality of captures
corresponds to a rendering of the second subset of the
plurality of web pages in a second computing device distinct
from the first computing device.
3. The non-transitory computer-readable medium of claim
1, wherein the browser is a first browser, and the first
plurality of captures correspond to a rendering of the first
subset of the plurality of web pages in the first browser, and
the second plurality of captures corresponds to a rendering
of'the second subset of the plurality of web pages in a second
browser distinct from the first browser.
4. A system, comprising:
at least one computing device
configured to at least:
obtain a first plurality of captures of a first subset of a
plurality of network pages;
obtain a second plurality of captures of a second subset
of the plurality of network pages;
identify a correlated pair of captures comprising one of
the first plurality of captures and one of the second
plurality of captures, the correlated pair of captures
being identified according to a degree of correlation
between a first plurality of attributes of the one of the
first plurality of captures and a second plurality of
attributes of the one of the second plurality of
captures;
generate a differential for the correlated pair, wherein
the differential comprises a difference in dimensions
between a first document object model (DOM) tree
of a first rendering in the one of the first plurality of
captures and a second DOM tree of a second ren-
dering in the one of the second plurality of captures;
and

US 9,465,781 B2

15

generate a notice associated with the correlated pair, in
response to the differential meeting a predefined
threshold.

5. The system of claim 4, wherein the one of the first
plurality of captures comprises a first image rendering of a
respective one of the first subset of the plurality of network
pages, and the one of the second plurality of captures
comprises a second image rendering of a respective one of
the second subset of the plurality of network pages.

6. The system of claim 5, wherein the differential further
comprises an image similarity metric based at least in part on
the first image rendering and the second image rendering.

7. The system of claim 6, wherein the image similarity
metric comprises a plurality of locations at which one of a
plurality of pixels differs between the first image rendering
and the second image rendering.

8. The system of claim 4, wherein the first plurality of
captures correspond to a first browser, and the second
plurality of captures correspond to a second browser distinct
from the first browser.

9. The system of claim 4, wherein the at least one
computing device is further configured to at least:

obtain, from a user, a degree of distinction between the

one of the first plurality of captures and the one of the
second plurality of captures; and

wherein the differential is based at least in part on the

degree of distinction.

10. The system of claim 4, wherein the first plurality of
attributes comprises a first login state, and the second
plurality of attributes comprises a second login state.

11. The system of claim 4, wherein the at least one
computing device is further configured to at least:

obtain, from a first client device, a network page request;

determine, from the network page request, at least one

action, the at least one action, when performed by at
least one second client device, duplicating a commu-
nication of the network page by the first client device;
and

communicate the at least one action to the at least one

second client device.
12. The system of claim 11, wherein the at least one
computing device is further configured to at least:
obtain, from the first client device, a first capture corre-
sponding to a response to the network page request; and

obtain, from the at least one second client device, at least
one second capture corresponding to a response to a
duplication of the network page request.

13. The system of claim 11, wherein the at least one
computing device is further configured to at least:

store a response to the network page request in a cache;

and

10

15

20

25

30

45

50

16

communicate, from the cache, to the at least one second
client device, the response to the network page request
in response to a duplication of the network page
request.

14. A method, comprising:

obtaining, by at least one computing device, a first plu-

rality of captures of a first subset of a plurality of
network pages;

obtaining, by the at least one computing device, a second

plurality of captures of a second subset of the plurality
of network pages;
identifying, by the at least one computing device, a
correlated pair of captures comprising one of the first
plurality of captures and one of the second plurality of
captures, the correlated pair of captures being identified
according to a degree of correlation between a first
plurality of attributes of the one of the first plurality of
captures and a second plurality of attributes of the one
of the second plurality of captures; and
generating, by the at least one computing device, a
differential for the correlated pair of captures, wherein
the differential comprises a measure of a difference in
dimensions between respective document object model
(DOM) trees of the correlated pair of captures.
15. The method of claim 14, wherein the differential
further comprises an image similarity metric for respective
image renderings of the correlated pair of captures.
16. The method of claim 15, wherein the image similarity
metric comprises a means-squared differential.
17. The method of claim 15, wherein the image similarity
metric is based at least in part on a degree of difference
indicated by a user.
18. The method of claim 14, further comprising:
obtaining, by the at least one computing device, from a
first client device, a network page request;

determining, by the at least one computing device, from
the network page request, at least one action, the at least
one action duplicating, when performed by at least one
second client device, a communication of the network
page request; and

communicating, by the at least one computing device, the

at least one action to the at least one second client
device.
19. The method of claim 18, wherein the at least one
action comprises at least one of a network address manipu-
lation or a browser session cookie duplication.
20. The method of claim 18, further comprising:
storing, by the at least one computing device, a response
to the network page request in a cache; and

communicating, by the at least one computing device,
from the cache, to the at least one second client device,
the response to the network page request in response to
a duplication of the network page request.

#* #* #* #* #*

